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Continuous plates are widely used in almost every complicated engineering structure such
asaeroframes, marine structureslike ships and submarines, pressure vessels, rocket launching
pads, instrument mounting bases for space vehicles etc. The influence of a concentric rigid
ring support, placed at an arbitrary distance from the centre, on the free vibrations of a thin
isotropic circular plate has been studied by Bodine[l, 2]. An allied problem of the vibra-
tion of the circular plate stiffened by concentric rings has been investigated by Fleyshman
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Abstract—The general development of the theory given here considers the material to be
orthotropic and continuous over (n — 1) elastic or rigid supports. The effect of rotatory inertia
and in-plane loads are also included while formulating the equations of motion. Double and
triple series solutions are given for orthotropic continuous plates. By matching the continuity
conditions at the intermediate supports and satisfying the boundary conditions at the outer
edge, the frequency determinant is obtained. For the purpose of numerical computations, an
isotropic plate continuous over an intermediate-rigid or elastic-support and free and with no in-
plane loads at the outer edge is considered. It is found that the influence of Poisson’s ratio on
the frequency parameter is significant only for the first symmetric or asymmetric modes. The
rotatory inertia influences the frequency parameter when the radius to thickness ratio is less
than 80, viz, when the plate is thick. Moreover, the elasticity of the support influences con-
siderably the free vibration of plates.

NOTATION

outer radius of the continuous plate

= ER*12(1 — »?), flexural rigidity of the plate

Young’s modulus of elasticity

area moment of inertia in the r- and 6- directions

number of nodal dia.

hoy , the radially compressive force per unit width applied at the outer boundary
number of nodal circles

(Q — Q)/Q, x 100, Q, being the frequency parameter Q when v = 0-3000
mass density per unit volume

Poisson’s ratio

= b, /a, radial distance to the support

the applied stress at the outer boundary

circular frequency in radians.

INTRODUCTION

and Shabliy(3] and Kirk and Leissa[4].

The object of the present work is to investigate the free vibrations of isotropic and ortho-
tropic plates continuous over (n — 1) intermediate-elastic or rigid-concentric ring supports.

1 Professor.
1 Associate Lecturer.

603



604 VINCENT X. KUNUKKASSERIL and A. S. J. SWAMIDAS

While formulating the equations of motion the influence of rotatory inertia and in-plane
loads are also considered. Double series solutions and triple series solutions are obtained
for the orthotropic plates which reduce to known exact solutions in the case of isotropic
plates. By matching the continuity conditions and satisfying the boundary conditions, fre-
quency equations are obtained. For the purpose of numerical calculations, an isotropic plate
continuous over an intermediate concentric ring support and free at the outer edge is con-
sidered. Since in practical cases rigid intermediate supports are only an approximation to
the actuality, the study also takes into consideration the influence of the elasticity of support.

GOVERNING EQUATION AND SOLUTION

The equations of motion for the transverse vibration of cylindrically orthotropic circular
plate element shown in Fig. 1, with rotatory inertia and in-plane loads are,

oN, 13Ny , N, =N

6r+; a0 r =0

80, 1 00, Q’+N ow Naﬁw Ny 6*w 42 (law 152W)“yh6 (1)
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where,
a, = 812/S1,
k* = 522/511 (3)
az = Se6/S1

and Sy, S;2, S22, Sge are the elastic stiffness, 4 is the thickness of the homogeneous plate
and yI,, yI, are the mass moment of inertia of the plate in the r- and 8- directions.

Combining equations (1 and 2), the differential equation for the displacement of the middle
plane of the plate is obtained as,

Si.h? [(7“w (2a1 + 4a3) o*w N k* o*w N 203w
12 [or* r2 ort o0 " vt 0% ' r or
(2a1 + 4a3) 3w kP o*w (2ax + 2k% + 4a3) *w

) o T F A "

r r
k* ow 0* 1.0 ( © 1, 02
R R

06*

s or r or rE 2 86?
0w tow 1 %w Low 1 &w
— NS N == + 5 =5 22 7| =
[N' ar o(r 6r+ r? 602) * 2Nro("2 00 ror 60)] ° @

where N,, Ny and N,, are the stress resultants acting on the element of the plate.

Ne

Ne+ Ners Nres re
Fig. 1. Forces and moments acting on a plate element.
The sign convention of forces and moments are shown in Fig. 1, along with the coor-

dinate sytems. To generalise the derivations, the above equation is non-dimensionalised by
the proper choice of parameters and can be written as,

8*%  (2a,+4a;\ W KPo*W 2%
Froa p T2 T AR T oA
p P 0p* 06*  p* 06*  p op
B (2a1 + 4a3) 2w k2w (2a1 +2k? + 4a3) *w k2 6ﬂ

0’ dp 00 p? 9p? p* 0% 03 3p

[_ Ip & ( ow I, W
+Qza—i'z[w"g—z——(l’—)“—;—z_z
a‘pdp \' 0p ha*p* 00

1252 [ 3*w 10w 1 o%w 10w 1 0*w
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Sih* 7 0p? ”(p P 662) M ”o(p2 29 pop 60) ] ©)
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where,
W = wfb,
p=rlb, (6)
=t
o - 12yhb:a)2.
NS

The plate is continuous over intermediate ring supports as shown in Fig. 2. The plate
continuous over (n — 1) intermediate concentric ring supports can be split up into a set
of (n — 1) annular plates of radii (b, b,), ... (b;-, b )s -+ (b,—y, b,) and a central complete

Quter edge with
prescribed boundary
conditions

N it
% |
jl (13! Dx
i i Elcshc ngid
] Support Support l
g }“j P !
N _J

%

'1""'""‘"""""

bp

P J S

Fig. 2. Continuous plate with (n — 1) rigid and elastic ring supports.

plate of radius b,. The method of approach to obtain the solution for the vibration of
continuous plate is based on matching the continuity conditions at each intermediate
support and satisfying the boundary conditions at the outer edge. This can be done provided
the solutions for the vibration of annular and complete plates with rotatory inertia and in-
plane loads are available.

SOLUTION TO ANNULAR PLATE

The direct stresses acting on the jth annular plate and the central complete plate, under
the action of radially inward forces at the outer edge, are shown in Fig. 3. The stresses de-
veloped in the annular plate due to radially inward and outward stresses of o; and o;_, can
be obtained by solving the plane elasticity equations. The expressions for the non-zero stress
components are seen to be in the following form:

N, =ho, = h[Bip* ™' + B,p7 1]
N, = hog = hk[Byp* ™' — B, p~*"1] ™M
Npﬂ - O
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Fig. 3. Annular and complete plates.

where,

_ bt~ Yo bE it — 0, b7* Y

Bl_ bk—lb—k—l_ —k—-lbk—l
j-1Yj i-1 Yj

e (L e T )
B, = n_ - 1_1 1 _l 1_1_ (8)
S P R P

bj—l k~1
Oj-1= 0g b

bj k-1
O'J=O'0 I;' .

Assuming a separation of variable type deflection function in the form

w = R(p) cos m@ e* 9)
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and substituting equations (7) and (9) into (5), and using the change of variables p = ¢*
we get,

d*R d3R d?R d2R dR
____4 _12 2 2 (1+Kk)u e 2
R CEPL R RN e! 2) +£R e [d S+ (k= )5~ km RJ
_...[d?R dR d*R I
_/*‘Ze(l k)u[d—ui_(k ¥ 1)a + kaR:I + QZ[eZ (h . du haoz mZR) - e4uR} =0
(10)
where,
_ 12b,2B,h
#1 - S11h3
126,°B,h
Uy = —S*h—f— (1
11

2 = m*(2a, + 4a;) + k*
e* = m*k? — m*Q2a, + 2k* + 4a,).

A closed form solution to equation (10) is not seen to be readily available. Equation (10)
cannot be solved by the Frobenius method using a single infinite series, since there are three
different variables in «, namely, ¢! "% ¢! “0% and ¢2* appearing in (10), each giving rise
to three completely different series which cannot be incorporated into the single series of
Frobenius. Moreover, it is not easily possible to reduce equation (10) to a simple differential
equation by any transformations. However, it is seen that a solution can be obtained by
modifying the single Frobenius Series into a triple series, each varying independently. Such
a series which would lend itself as a solution to (10) can be represented as,

R= i i i q+l(1+k)+j(1 ky+21u (12)

i=0,1j=0,1 I=0,1

where g represents the unknown roots to be determined. Substituting this into equation (10)
and collecting all like powers of the exponent in # and equating them to zero, we get the
indicial equation,

[g* — 4¢° + (5 — A1)g* + Q4% — 2)q + &%lcgoo =0 (13)
and the recurrence relations,

g+ QA+ —4g+ 0 +OP+G-Dlg+A+HP
+ (242 = 2)[g + (1 + k)] + £3c100 — pi{g® + (k — 1)g — km*}coo0 =0

{lg+Q - —4lg+ 0 -OP + 6 -Dg+ 1 -
+ QA2 = 2)lg + (1 = O] + %}cor0 — H2{g® — (1 + K)g + km*}cooo = 0

{g+2* —Hg +2°+ (5= ) + 2 + 22> - 2)(q +2) + &%}coox

I, Im?
+QZ{ 2_-1'%}6.000:0

ha? ha
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{lg +i(1 + k) +j(l —k) + 21* — 4lg + i1 + k) + j(1 — k) + 203
+ (=g +id+k)+jd -k + 27 + (242 -2)
x [qg+ il + k) +j(1 —k) + 20 + *}e —m{lg + (= DA+ B +jA — k) + 202
+(k—-Dg+GE-DA+E)+jd— ky + 2] — km2}c,--1,j’,
—w{lg+ i1+ k) + (- DA~k + 20
—(+RBg+il +k)+(G—DA - k)y+20+ kmz}ci’j_“

I _ I,m?
+ Qg+ i+ )+ (LB +20 = D - Z—az}c,.,j,,_l — Q% ;-2 =0.
(14)
The roots of the indicial equation (13) are found to be,
g=1+a+p
g, =1+a-8 (15)
g3=1—a+p
ga=1—-o0~—8
where,
a =41 + A2 +2()% + £»)'/?]/2 6
B =3[l + A2 — 2(A2 4 2)'/2)/? (16)
Hence the solution to equation (5) can be written as,
W= [A10,(y, #2, Q, p) + A, ¢2(1s, 12, Q, p)
+ A3 ¢3(#19 Has Qa P) + A4 ¢4(”19 Ha s Qa p)]cos mG eli (17)
where,
, ’ Q’ _ @ ® @ © e [q1 +i(1+k)+j(1 -k)+21]
& (pys pz ) i;) j;o o P
Uy, Q, )= SRR ¢ [g2+i(1+k)+j(1—k)+20]
¢2(115 B2 p) i;{) j;o l;) P
iy, Q, p) = SRR y [qa+i(1+ky+ j(1—k)+21]
¢3(#1 ,u'Z p) i;o JZO l;ocjlp (18)
’ ,Q, _ «© o] o0 c". {q3+i(1+k)+ j(1—-k)+2I]
bais, 12, Q, p) i;) ,-Zo 2 cunp

The coefficients c;;; are obtained by using the recurrence relations (14). Similar solutions
can be obtained for the other (» — 2) annular portions of the continuous plate.

SOLUTION TO COMPLETE PLATE

The solution to the complete plate shown in Fig. 3 is obtained as discussed below. The
stresses 6, and g, are obtained by solving the plane elasticity equations of a complete plate
subjected to radially inward loads. The solutions are,

N,=ho,= —hoyp*!

Nﬂ = hag = —kho-opk_l. (19)
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Assuming a deflection function of the form given by equation (9) and again making the
change of variable p = e*, we get,

d*R d3R d?R dR

TP aat G- SR -t R
d?R

+us e(”""‘[ (k—l)———k "R]
du?
I d2R I
where,
1262 ho,

U3z = SR (21)

Proceeding in the same way as for equation (12), equation (20) is solved by assuming a
double series of the form,

0 0
R= d. ‘e[q+(1 +k)i+ 2j]u. (22)
iJ§1j£§1 Y

Substituting the above into equation (20) and collecting the similar exponents in % and equa-
ting them to zero, we get the same indicial equation (13), as previously obtained for the
annular portion.
The recurrence relations are given as,
{lg+A+R1F -4lg+ A+ P+~ Dlg + 1 + kb))
+ (222 = 2g + (1 + 0] + e*}dyo + p3lg* + (k — 1)g — km*] dgp =0
{@+2*—4g+2>+ (5 -G +2 + 247 - (g +2) + &*}dy;

I, I
+ Q2 [ qz—};"sz]doﬁo

ha?
[g+il+0)+21*—4d4g+iQ +E)+ 2P +E—-Dlg+il +k)+ 21?
+ @22 =Dlg+i(1 + k) + 2]+ &3} dy; + pa{lg + G — DA + k) + )
+(-=Dlg+G—-DQA + k) +2j]— km?}d,_ 1,j

[g 40+ R+ 20 = DF = oy = 004, =0 @)

+Q2{h2

Hence the solution to equation (5) can be written down as,
w=[A¥, (3, Q, p) + A2 ¥2(u3, Q. p) + 4333, Q. p) + AsYalps, Q, p)] cos m e’

(24)
where,
Y(us, Q,p)= z Z dijp[q1+i(1+k)+2j]
i=0 j=0
, Q, SRS d;, (g2 +i(1+k)+2j]
Yalus, Q, p) = :Z'o J;o P
Uslus, Q, p)= Y Y djpleeriarorzi
i=0 j=0
¥ (13, Q, p) = f 3 dyyplastici+h+2j] (25)

(=1
~,
]
(=]
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The coefficients d;;s are obtained by using the recurrence relations (23). For a complete
plate, considering the finiteness of the deflection function throughout the plate including
the center, the deflection configuration given by (24) shall be modified as,

W= [AWi (13, Q, p) + A ¥2(15, Q, p)] cos mf e (26)

REDUCTION TO ISOTROPIC PLATES

For isotropic plates, the series solutions given in equations (17) and (26) reduce easily to
exact solutions in terms of Bessel functions. For isotropic material, the physical parameters
will get reduced to,

=1, a =y, a3—1;v
I —ﬁ, I(,—E, h= E "
i V) 12 1 -v»
and the roots of the indicial equation become,
g, =m+2, go=m, q;=—-m+2, Gy = —m. (28)

Substituting the above parameters and roots into equation (17), we obtain in the case of an
annular isotropic plate,

W = [A4J,(0p) + BY,(3p) + CL(np) + DK, (np)] cos mf ™! (29)
where,
ﬂ hZQZ 2 1/2 H hZQZ 1/2
s =[5 +2-= 2 el
{[(2+ 24a2) +0 ] + (2+ 24a2):
# hZQZ)Z 1/2 u hZQZ 1/2
=[{E+=22 Q| —(E+2=
7 {[(2+ 24a7) ] (2 + 24a2)} (30)
h= 12a*(1 — v?)ha,
ER3 :

For a complete isotropic plate, the solution obtained from equation (26) is

W = [4J,(6p) + CL(np)lcos mf ™. 3n
BOUNDARY AND CONTINUITY CONDITIONS
Atp=1,
Plate fixed at the boundary,
w=0
ow

Plate simply supported at the boundary,
w=0

Mp =0. (32b)
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Plate free at the boundary,
M,=0

» =
oM
p8
- =4.
230 (32¢)
The continuity conditions can be specified in the following manner. Consider the plate as
supported over (n — 1) intermediate supports. The intermediate supports could be considered
as rigid or elastic. At any of the intermediate support p = p;,
For arigid support,

Vﬂm g,

(W) = (W4 =0

&), - &), o
(M,);- =(M,);+.

For an elastic support,

@) = ().

(z_;v) N (g'g) (34)

{Mp)j- = (Mg)j-{-
(Vp)j+ - (Vp)_f" = kl(w)j—

Using the boundary conditions of (32 a, b or ¢) and the continuity conditions of (33) or
(34) in equations (17) and (26) or (29) and (31), we get (4n — 2) equations containing (4n — 2)
arbitrary constants. These (4n — 2) equations lead to the frequency equation which must
be solved to find the eigenvalues of the continuous plate. From the eigenvalues, the eigen-
vectors and the non-dimensionalised deflection modes can be calculated.

EXAMPLE PROBLEMS AND FREQUENCY EQUATIONS

For the purpose of numerical calculations, two specific problems shown in Fig. 9 are con-
sidered. Plates are assumed to be isotropic in the calculations. The frequency equations for
both the cases are given as equations (35) and (37) [u = 0].

For the rigidly supported free continuous plate, the frequency equation is,

Judp)  Imp) —Jn0p) —Yo(0p) —Inp) —K(np)

0 0

IuBps)  Ln(nps) 0 0 0. (35
0 0 Ju(0p5) Y,(dp5) L(np,) K, (npy)
0 0 J :’:1(5.00) Y, ;(590) 1 :;('IPQ) K::.(’Ipo)
0 0 Jn(0po) Yo(0po)  In(mpo)  Kn(npo)
where
po=1

Jn(0p) = P ~ 8J11(0p)
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mY, (6
Y (3p) = —-pi"—) — 5%41(60)
ml,
Iinp) = ;’”’ ) 4l s110)
mK,,
K.(np) = ——;n—p) — 1K, 1(np)
(1 — v)(m® — T 1—v)s
syom = [L2 = 2] o) + S0 e0)
(1 — 2 1—v)6
vaon = |25 - ] o) +Py e
(1 — v)(m? — m 1—v)y
L(np) = LL_)(,T“—) + nzW L(np) _ L, +1(np)
(1 — vVY(m? —m -y
Kn(np) = (“—%——) + 'lﬂ K,(np) + a )n Ko+ 1(np)
(1 —v)(m® —m?) 52 a-
suepy = [~ L D MY ey + [ ] Trar(50)
i p p
" 1 ¢ (m3 - m2) 52m— (1
vaen = |- XG0 ) + [ 48] Youson
" ] 1 - v (m3 - m2) m- 1 nm
I.(np) = —(——)—ps——+"7 1(np) + [ &= ) +1 ] L s1(np)
" (1 —v)(m3 —m?) m (1 —vym
Knmp)= |- ——F——+ "—— K.(np) + [—-2— - n3] K, 1(np) (36)
p p | p
For an elastically supported, free plate, the frequency equation is,
J(ps) I ”(nps) —Jn0ps)  —Yu(0p) —I(npy) —K”(nps)
Jm(aps) Im(r’ps) - Jm((sps) - m(ops) - Im(r]ps) - Km(nps)
“ m(éps) alm(r’ps) me(éps) me(aps) blm(rlps) me(ﬂPs) =0 (37)
0 0 J(0p0) Ya(000)  I(npo) K..(npo)
0 0 Jm(800) Y. (6po)  In(npo) Kn(npo)
where,
mé? &3
“J(3p) = [7(— - 1] T = 2 0,0 41(60)
1P 1
" m 2 3
1300 = = |+ 5% = 1] a0 = - Yosstro)
1P
md? &3
aJrp) = — —— Ju(0p) + — J,41(6p),
0) kp (%p) . +1(%p)
52 53
PY"(Op) = — Lo Y, (0p) + — J. s (6
) *p (6p) x, +1(0p)
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2 3
" mrl
YLI0P) = + o 1 (19) + = T (1)
kip ky
b g qu '13 ,.
kip ky

NUMERICAL RESULTS AND DISCUSSION

Numerical calculations were done in an IBM 7044/1401 computer. The program was
written in Fortran Language and three subroutines—one each for evaluating the elements of
the determinant, the Bessel functions and the determinant value with or without eigenvectors
—were used along with the main program. The accuracy imposed on the calculation of
Bessel functions was 1078, The iteration process for calculating each eigenvalue and the
corresponding deflection mode took 8 sec on the average.

Examining the continuity conditions in equations (33) and (34), it can be seen that the
physical conditions of bending moment and shear can be replaced by the second and third
derivatives with respect to p of the deflection function w. From equation (35) it can be seen
that the physical parameters that influence the frequency parameter Q are v, the Poisson’s
ratio, h/a, the thickness ratio and p,, the distance of the concentric ring support from the
centre. In the case of a free plate on elastic support, the parameters are v, hfa, p, and k;,
the coefficient of support elasticity.

+10

0-3000)
°
o

'
o

y
Il
(=]

]
w
[=)

v Percentage increase of L1 from that for »

]
>
o

Fig. 4. Influence of Poisson’s ratio “»” on the frequency parameter Q> (p; = 0-60).
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Figure 4 shows the influence of Poisson’s ratio on the frequency parameter of a free con-
tinuous plate on rigid support. The percentage difference in the parameter to the standard
value of Q when v = 0-30 is plotted on the y-axis against v on the x-axis. As seen the varia-
tion is linear in the case of symmetric and first asymmetric modes (m = 0 and m = 1). For
higher modes it is parabolic as could be proved from equation (35). £ increases with an
increase of v. The first eigenvalue of both the modes (i.e. s =0,m =0and s =0, m = 1) are
found to give greater differences than the subsequent eigenvalues. The difference is found
to be +1-36 per cent for a difference of +0-05 in v for the lowest mode (m = 0, s = 0). For
the higher frequencies, the difference is small and thus can be neglected.

T e—a — . I : 1 7 ]

i m=0

Fig. 5. Effect of support distance “p,” on the frequency parameter ““ Q2 (v = 0-30).

Figures 5 and 6 show the effect of varying p, on the frequency parameter Q. The results
shown in Fig. 5 agrees with the results of Bodine[2]. It is found that when p, is less than 0-25,
the first asymmetric (m = 1, s = 0) mode occurs before the first symmetric mode (m = 0,
s = 0). For all the other cases, the asymmetric modes give values higher than the symmetric
mode. Figure 6 shows the results obtained for the case of an elastically supported plate
(v = 0-300, &k, = 170-0). Comparing the results in this figure with those given in 5, it can be
said that the support elasticity influences the frequency spectrum considerably. The well-
defined crests and troughs seen for the rigidly supported plates are not present here, except
in the case of the first and second symmetric and asymmetric modes (m =0, s =0; m =0,
s=1;m=1,5=0;m=1,s5 = 1). For the higher modes the elasticity of the support does
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. T T T T T T T T
180— “ —_—m=0 -
o ;
[N T
150— S=4- -

120 /“—'——“-..-___—-—'——--__7————____,—4
S=3

I N

60— —

30—

Fig. 6. Influence of support distance *“p;” on the frequency parameter “ Q> (v = 0-30, k, = 170).

not give rise to much differences in Q when the support moves outward from the centre. It is
quite important to note that for p; less than 0-46, the first asymmetric mode (m = 1, 5 = 0)
gives lower values than the first symmetric mode (m =0, s = 0).

Figures 7 and 8 show the frequency spectrums for the two support conditions of interest.
From these figures the influence of rotatory inertia on frequency paraméters can be estimated.
At low values of Q for any a/h ratio the rotatory inertia effect is seen to be very small. But
for higher modes of vibration, the effect is seen to be discernible when a/A is smaller than
100. If the effect of rotatory inertia is not taken into account in the study, then all the curves
in Figs. 7 and 8 must be horizontal. For the twelvth symmetri¢ mode (s = 11, m =0) of

the elastically supported plate with ;—Il= 20, the influence of rotatory inertia is about

22 per cent.

Figure 9 gives some of the interesting vibration modes for the rigidly and elastically sup-
ported plates. For the rigidly supported plate, the support is always a circle of zero deflec-
tion. Unlike in the case of a free plate[5], the frequency parameter continuously increases
with the number of nodal diameters and circles. ‘As could be seen, the elasticity of the sup-
port affects the mode shapes considerably. There is always an upward or downward deflec-
tion of the elastic support. The second symmetric mode of the elastically supported plate
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Vibration of continuous circular plates 619

does not have any nodal circle. The first asymmetric mode (m = 1) has a nodal circle within
the elastic support while the second asymmetric mode (m = 1) again has only one nodal
circle which is now located outside the elastic support.

Figure 10 gives the influence of the elasticity of the support on the frequency parameter.
It is found that for the lower modes, a value of 10,000 for k, (i.e. log,, k; = 4), it is found
to behave almost like a fixed support; and at higher modes even this value of k, affects the
results very much. For higher modes it is also found that Q is almost stationary up to
k, = 1000 (i.e. log;o k; = 3) and then increases rapidly for higher values,

It may be mentioned that the method developed in this work can be applied to stepped
circular plates as well.
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Abcrpakt-—ITo TeopHu npuBeaeHHOM B 3TOH paboTe MaTepHaT CYUTACTCS OPTOTPONHYECKEM
U Hepa3pLiBEbiM Hak (n — 1) 3nacTuyHoM unu xectkok onopamu, s GopMynaunH ypassenmi
IBHXEHHS TAKOKE BKIIFOYAIOTCHA 3(¢EKTH BpalaTebHON MHEPIHH H 3(GPEKThl HATPY3KH 1O
IIOCKOCTHA. JUTA OPTOTPONMYECKUAX HEPA3PEIBHAIX IUIACTHH HALILTH JABYXPSIHBIE M TPEXPAIHEIEC
peweHns, CornacoBaHueM yCIOBHH HEPA3PLIBHOCTH Y IIPOMEXYTOYHBIX OTIOP M YAOBNETBOPE-
HHEM TI'DAHHYHBIX YCIIOBHH Ha HAPYKHOM KpAlo, MOJIYYANM ONpeNesMTeNb YacTOThl [ima
YHCIOBOTO PacyeTa pacCMaTPHBACTCA H30TPONMYECKasn HEpas3phiBHAN IVIACTHHA HAX IPOMEKY-
TOYHOH JJIACTUYHOM HITH KeCTKOH onopam#, 63 IITOCKOCTHBIX HArpy3OK Ha HApYXHBIH Kpaik.
Hamnu, yro snusiaue xoadpduventa Myaccona Ha napaMeTphl YaCTOTH! ABNACTCA CYINECTBCH-
HBIM TOJIbKO [AJISi IEPBLIX CHMMETDHYHBIX WM aCHMMETPHYHLIX koneOGaunii. BpamaTtebaas
HHEPDIMA BJIMSET HA NAPaAMETP YacTOThI TOrAa, KOTAA paguyC IO OTHOMICHNIO TOMIAHLI MEHEES
80, a KIMEHHO, €CJIX JTUCT TONCTHIA, KpOME TOr0, 311aCTHYHOCTE OMOPLI 3AMETHO BIIMSET HA CBO-
6oaHoe xosebaHue NNacTHH.



